Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Virol J ; 20(1): 85, 2023 05 03.
Article in English | MEDLINE | ID: covidwho-2319408

ABSTRACT

Infection with the novel pandemic SARS-CoV-2 virus has been shown to elicit a cross-reactive immune response that could lead to a back-boost of memory recall to previously encountered seasonal (endemic) coronaviruses (eCoVs). Whether this response is associated with a fatal clinical outcome in patients with severe COVID-19 remains unclear. In a cohort of hospitalized patients, we have previously shown that heterologous immune responses to eCoVs can be detected in severe COVID-19. Here, we report that COVID-19 patients with fatal disease have decreased SARS-CoV-2 neutralizing antibody titers at hospital admission, which correlated with lower SARS-CoV-2 spike-specific IgG and was paralleled by a relative abundance of IgG against spike protein of eCoVs of the genus Betacoronavirus. Additional research is needed to assess if eCoV-specific back-boosted IgG is a bystander phenomenon in severe COVID-19, or a factor that influences the development of an efficient anti-viral immune response.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Immunoglobulin G , Spike Glycoprotein, Coronavirus , Seasons , Antibodies, Viral , Antibodies, Neutralizing
2.
Front Immunol ; 14: 1046639, 2023.
Article in English | MEDLINE | ID: covidwho-2318764

ABSTRACT

Cellular immune responses are of pivotal importance to understand SARS-CoV-2 pathogenicity. Using an enzyme-linked immunosorbent spot (ELISpot) interferon-γ release assay with wild-type spike, membrane and nucleocapsid peptide pools, we longitudinally characterized functional SARS-CoV-2 specific T-cell responses in a cohort of patients with mild, moderate and severe COVID-19. All patients were included before emergence of the Omicron (B.1.1.529) variant. Our most important finding was an impaired development of early IFN-γ-secreting virus-specific T-cells in severe patients compared to patients with moderate disease, indicating that absence of virus-specific cellular responses in the acute phase may act as a prognostic factor for severe disease. Remarkably, in addition to reactivity against the spike protein, a substantial proportion of the SARS-CoV-2 specific T-cell response was directed against the conserved membrane protein. This may be relevant for diagnostics and vaccine design, especially considering new variants with heavily mutated spike proteins. Our data further strengthen the hypothesis that dysregulated adaptive immunity plays a central role in COVID-19 immunopathogenesis.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , T-Lymphocytes , Adaptive Immunity , Ataxia Telangiectasia Mutated Proteins , Interferon-gamma
3.
Sci Transl Med ; : eabn4338, 2022 Jul 21.
Article in English | MEDLINE | ID: covidwho-2249567

ABSTRACT

The extent to which severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOC) break through infection- or vaccine-induced immunity is not well understood. We analyzed 28,578 sequenced SARS-CoV-2 samples from individuals with known immune status obtained through national community testing in the Netherlands from March to August 2021. We found evidence of an increased risk of infection by the Beta (B.1.351), Gamma (P.1), or Delta (B.1.617.2) variants compared to the Alpha (B.1.1.7) variant after vaccination. No clear differences were found between vaccines. However, the effect was larger in the first 14-59 days after complete vaccination compared to ≥60 days. In contrast to vaccine-induced immunity, there was no increased risk for re-infection with Beta, Gamma or Delta variants relative to Alpha variant in individuals with infection-induced immunity.

4.
Int J Infect Dis ; 2022 Nov 24.
Article in English | MEDLINE | ID: covidwho-2243359

ABSTRACT

OBJECTIVE: To evaluate dynamics of antibody levels following exposure to SARS-CoV-2 during 12 months in Dutch non-vaccinated hairdressers and hospitality staff. METHODS: In this prospective cohort study, blood samples were collected every three months for one year, and analyzed using a qualitative total antibody ELISA and a quantitative IgG antibody ELISA. Participants filled out questionnaires, providing information on demographics, health and work. Differences in antibody levels were evaluated using Mann-Whitney U and Wilcoxon Signed Rank tests. Beta coefficients (B) and 95% confidence intervals (95%CI) were calculated using linear regression. RESULTS: Ninety-five of 497 participants (19.1%) had ≥1 seropositive measurement before their last visit using the qualitative ELISA. Only 2.1% (2/95) seroreverted during follow-up. Of the 95 participants, 82 (86.3%) tested IgG seropositive in the quantitative ELISA too. IgG antibody levels significantly decreased in the first months (p<0.01), but remained detectable up to 12 months in all participants. Higher age (B, 10-years increment: 24.6, 95%CI: 5.7-43.5) and higher BMI (B, 5kg/m² increment: 40.0, 95%CI: 2.9-77.2) were significantly associated with a higher peak of antibody levels. CONCLUSIONS: In this cohort, SARS-CoV-2 antibodies persisted for up to one year after initial seropositivity, suggesting long-term natural immunity.

5.
J Occup Environ Med ; 65(4): e227-e233, 2023 04 01.
Article in English | MEDLINE | ID: covidwho-2190957

ABSTRACT

OBJECTIVE: We aimed to assess SARS-CoV-2 contamination of air and surfaces to gain insight into potential occupational exposure in a large meat processing plant experiencing COVID-19 clusters. Methods: Oro-nasopharyngeal SARS-CoV-2 screening was performed in 76 workers. Environmental samples ( n = 275) including air, ventilation systems, sewage, and swabs of high-touch surfaces and workers' hands were tested for SARS-CoV-2 RNA by real-time quantitative polymerase chain reaction. Results: Twenty-seven (35.5%) of the (predominantly asymptomatic) workers tested positive with modest to low viral loads (cycle threshold ≥ 29.7). Six of 203 surface swabs, 1 of 12 personal air samples, and one of four sewage samples tested positive; other samples tested negative. Conclusions: Although one third of workers tested positive, environmental contamination was limited. Widespread SARS-CoV-2 transmission via air and surfaces was considered unlikely within this plant at the time of investigation while strict COVID-19 control measures were already implemented.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , SARS-CoV-2 , RNA, Viral , Sampling Studies , Sewage
6.
J Clin Microbiol ; : e0126122, 2022 Nov 29.
Article in English | MEDLINE | ID: covidwho-2137404

ABSTRACT

The molecular detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is key for clinical management and surveillance. Funded by the European Centre for Disease Prevention and Control, we conducted an external quality assessment (EQA) on the molecular detection and variant typing of SARS-CoV-2 that included 59 European laboratories in 34 countries. The EQA panel consisted of 12 lyophilized inactivated samples, 10 of which were SARS-CoV-2 variants (Alpha, Beta, Gamma, Delta, Epsilon, Eta, parental B.1 strain) ranging from 2.5 to 290.0 copies/µL or pooled respiratory viruses (adenovirus, enterovirus, influenza virus A, respiratory syncytial virus, or human coronaviruses 229E and OC43). Of all participants, 72.9% identified the presence of SARS-CoV-2 RNA correctly. In samples containing 25.0 or more genome copies/µL, SARS-CoV-2 was detected by 98.3% of the participating laboratories. Laboratories applying commercial tests scored significantly better (P < 0.0001, Kruskal-Wallis test) than those using in-house assays. Both the molecular detection and the typing of the SARS-CoV-2 variants were associated with the RNA concentrations (P < 0.0001, Kruskal-Wallis test). On average, only 5 out of the 10 samples containing different SARS-CoV-2 variants at different concentrations were correctly typed. The identification of SARS-CoV-2 variants was significantly more successful among EQA participants who combined real-time reverse transcription polymerase chain reaction (RT-PCR)-based assays for mutation detection and high-throughput genomic sequencing than among those who used a single methodological approach (P = 0.0345, Kruskal-Wallis test). Our data highlight the high sensitivity of SARS-CoV-2 detection in expert laboratories as well as the importance of continuous assay development and the benefits of combining different methodologies for accurate SARS-CoV-2 variant typing.

7.
Euro Surveill ; 27(42)2022 10.
Article in English | MEDLINE | ID: covidwho-2089697

ABSTRACT

BackgroundCountries worldwide are focusing to mitigate the ongoing SARS-CoV-2 pandemic by employing public health measures. Laboratories have a key role in the control of SARS-CoV-2 transmission. Serology for SARS-CoV-2 is of critical importance to support diagnosis, define the epidemiological framework and evaluate immune responses to natural infection and vaccine administration.AimThe aim of this study was the assessment of the actual capability among laboratories involved in sero-epidemiological studies on COVID-19 in EU/EEA and EU enlargement countries to detect SARS-CoV-2 antibodies through an external quality assessment (EQA) based on proficiency testing.MethodsThe EQA panels were composed of eight different, pooled human serum samples (all collected in 2020 before the vaccine roll-out), addressing sensitivity and specificity of detection. The panels and two EU human SARS-CoV-2 serological standards were sent to 56 laboratories in 30 countries.ResultsThe overall performance of laboratories within this EQA indicated a robust ability to establish past SARS-CoV-2 infections via detection of anti-SARS-CoV-2 antibodies, with 53 of 55 laboratories using at least one test that characterised all EQA samples correctly. IgM-specific test methods provided most incorrect sample characterisations (24/208), while test methods detecting total immunoglobulin (0/119) and neutralising antibodies (2/230) performed the best. The semiquantitative assays used by the EQA participants also showed a robust performance in relation to the standards.ConclusionOur EQA showed a high capability across European reference laboratories for reliable diagnostics for SARS-CoV-2 antibody responses. Serological tests that provide robust and reliable detection of anti-SARS-CoV-2 antibodies are available.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Laboratories , Antibodies, Viral , Sensitivity and Specificity , Immunoglobulin M , Antibodies, Neutralizing
8.
Nat Commun ; 13(1): 6103, 2022 Oct 15.
Article in English | MEDLINE | ID: covidwho-2077053

ABSTRACT

Existing assays to measure antibody cross-reactivity against different SARS-CoV-2 spike (S) protein variants lack the discriminatory power to provide insights at the level of individual clones. Using a mass spectrometry-based approach we are able to monitor individual donors' IgG1 clonal responses following a SARS-CoV-2 infection. We monitor the plasma clonal IgG1 profiles of 8 donors who had experienced an infection by either the wild type Wuhan Hu-1 virus or one of 3 VOCs (Alpha, Beta and Gamma). In these donors we chart the full plasma IgG1 repertoires as well as the IgG1 repertoires targeting the SARS-CoV-2 spike protein trimer VOC antigens. The plasma of each donor contains numerous anti-spike IgG1 antibodies, accounting for <0.1% up to almost 10% of all IgG1s. Some of these antibodies are VOC-specific whereas others do recognize multiple or even all VOCs. We show that in these polyclonal responses, each clone exhibits a distinct cross-reactivity and also distinct virus neutralization capacity. These observations support the need for a more personalized look at the antibody clonal responses to infectious diseases.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , Antigens, Viral , Humans , Immunoglobulin G , Spike Glycoprotein, Coronavirus
9.
JAMA Netw Open ; 5(10): e2237522, 2022 10 03.
Article in English | MEDLINE | ID: covidwho-2074859

ABSTRACT

Importance: In the early COVID-19 pandemic, SARS-CoV-2 testing was only accessible and recommended for symptomatic persons or adults. This restriction hampered assessment of the true incidence of SARS-CoV-2 infection in children as well as detailed characterization of the SARS-CoV-2 disease spectrum and how this spectrum compared with that of other common respiratory illnesses. Objective: To estimate the community incidence of SARS-CoV-2 infection in children and parents and to assess the symptoms and symptom severity of respiratory illness episodes involving SARS-CoV-2-positive test results relative to those with SARS-CoV-2-negative test results. Design, Setting, and Participants: This cohort study randomly selected Dutch households with at least 1 child younger than 18 years. A total of 1209 children and adults from 307 households were prospectively followed up between August 25, 2020, and July 29, 2021, covering the second and third waves of the COVID-19 pandemic. Participation included SARS-CoV-2 screening at 4- to 6-week intervals during the first 23 weeks of participation (core study period; August 25, 2020, to July 29, 2021). Participants in all households finishing the core study before July 1, 2021, were invited to participate in the extended follow-up and to actively report respiratory symptoms using an interactive app until July 1, 2021. At new onset of respiratory symptoms or a SARS-CoV-2 positive test result, a household outbreak study was initiated, which included daily symptom recording, repeated polymerase chain reaction testing (nose-throat swabs and saliva and fecal samples), and SARS-CoV-2 antibody measurement (paired dried blood spots) in all household members. Outbreaks, households, and episodes of respiratory illness were described as positive or negative depending on SARS-CoV-2 test results. Data on participant race and ethnicity were not reported because they were not uniformly collected in the original cohorts and were therefore not representative or informative. Exposures: SARS-CoV-2-positive and SARS-CoV-2-negative respiratory illness episodes. Main Outcomes and Measures: Age-stratified incidence rates, symptoms, and symptom severity for SARS-CoV-2-positive and SARS-CoV-2-negative respiratory illness episodes. Results: Among 307 households including 1209 participants (638 female [52.8%]; 403 [33.3%] aged <12 years, 179 [14.8%] aged 12-17 years, and 627 [51.9%] aged ≥18 years), 183 household outbreaks of respiratory illness were observed during the core study and extended follow-up period, of which 63 (34.4%) were SARS-CoV-2 positive (59 outbreaks [32.2%] during the core study and 4 outbreaks [2.2%] during follow-up). SARS-CoV-2 incidence was similar across all ages (0.24/person-year [PY]; 95% CI, 0.21-0.28/PY). Overall, 33 of 134 confirmed SARS-CoV-2 episodes (24.6%) were asymptomatic. The incidence of SARS-CoV-2-negative respiratory illness episodes was highest in children younger than 12 years (0.94/PY; 95% CI, 0.89-0.97/PY). When comparing SARS-CoV-2-positive vs SARS-CoV-2-negative respiratory illness episodes in children younger than 12 years, no differences were observed in number of symptoms (median [IQR], 2 [2-4] for both groups), symptom severity (median [IQR] maximum symptom severity score, 6 [4-9] vs 7 [6-13]), or symptom duration (median [IQR], 6 [5-12] days vs 8 [4-13] days). However, among adults, SARS-CoV-2-positive episodes had a significantly higher number (median [IQR], 6 [4-8] vs 3 [2-4]), severity (median [IQR] maximum symptom severity score, 15 [9-19] vs 7 [6-11]), and duration (median [IQR] 13 [8-29] days vs 5 [3-11] days; P < .001 for all comparisons) of symptoms vs SARS-CoV-2-negative episodes. Conclusions and Relevance: In this cohort study, during the first pandemic year when mostly partial or full in-person learning occurred, the SARS-CoV-2 incidence rate in children was substantially higher than estimated from routine testing or seroprevalence data and was similar to that of adult household members. Unlike in unvaccinated adults, SARS-CoV-2 symptoms and symptom severity in children were similar to other common respiratory illnesses. These findings may prove useful when developing pediatric COVID-19 vaccine recommendations.


Subject(s)
COVID-19 , Adolescent , Adult , Child , Female , Humans , Cohort Studies , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19 Testing , COVID-19 Vaccines , Pandemics , Parents , SARS-CoV-2 , Seroepidemiologic Studies , Male
10.
Immunity ; 55(9): 1725-1731.e4, 2022 09 13.
Article in English | MEDLINE | ID: covidwho-2036138

ABSTRACT

Large-scale vaccination campaigns have prevented countless hospitalizations and deaths due to COVID-19. However, the emergence of SARS-CoV-2 variants that escape from immunity challenges the effectiveness of current vaccines. Given this continuing evolution, an important question is when and how to update SARS-CoV-2 vaccines to antigenically match circulating variants, similarly to seasonal influenza viruses where antigenic drift necessitates periodic vaccine updates. Here, we studied SARS-CoV-2 antigenic drift by assessing neutralizing activity against variants of concern (VOCs) in a set of sera from patients infected with viral sequence-confirmed VOCs. Infections with D614G or Alpha strains induced the broadest immunity, whereas individuals infected with other VOCs had more strain-specific responses. Omicron BA.1 and BA.2 were substantially resistant to neutralization by sera elicited by all other variants. Antigenic cartography revealed that Omicron BA.1 and BA.2 were antigenically most distinct from D614G, associated with immune escape, and possibly will require vaccine updates to ensure vaccine effectiveness.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , Antigens, Viral/genetics , COVID-19 Vaccines , Humans , SARS-CoV-2/genetics
11.
Elife ; 112022 09 13.
Article in English | MEDLINE | ID: covidwho-2030291

ABSTRACT

Background: Variants of concern (VOCs) of SARS-CoV-2 have caused resurging waves of infections worldwide. In the Netherlands, the Alpha, Beta, Gamma, and Delta VOCs circulated widely between September 2020 and August 2021. We sought to elucidate how various control measures, including targeted flight restrictions, had impacted the introduction and spread of these VOCs in the Netherlands. Methods: We performed phylogenetic analyses on 39,844 SARS-CoV-2 genomes collected under the Dutch national surveillance program. Results: We found that all four VOCs were introduced before targeted flight restrictions were imposed on countries where the VOCs first emerged. Importantly, foreign introductions, predominantly from other European countries, continued during these restrictions. After their respective introductions into the Netherlands, the Alpha and Delta VOCs largely circulated within more populous regions of the country with international connections before asymmetric bidirectional transmissions occurred with the rest of the country and the VOC became the dominant circulating lineage. Conclusions: Our findings show that flight restrictions had limited effectiveness in deterring VOC introductions due to the strength of regional land travel importation risks. As countries consider scaling down SARS-CoV-2 surveillance efforts in the post-crisis phase of the pandemic, our results highlight that robust surveillance in regions of early spread is important for providing timely information for variant detection and outbreak control. Funding: None.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Humans , Netherlands/epidemiology , Phylogeny , SARS-CoV-2/genetics
12.
Pathog Dis ; 80(1)2022 10 03.
Article in English | MEDLINE | ID: covidwho-2017915

ABSTRACT

Effective vaccination is a key element in the exit strategy from the current severe acute respiratory syndrome-CoV coronavirus-2 (SARS-CoV-2) pandemic, and may also offer protection against severe disease from future variants of concern. Here, we prospectively monitored T-cell responses over time, using ELISpot interferon-γ (INF-y) release assays, and B-cell responses, using serological tests, after vaccination and booster with BioNTech/Pfizer mRNA (Pfizer) and Janssen vector (Janssen/Johnson & Johnson) vaccines in hospital health care workers. Vaccine recipients were divided into seropositive and seronegative individuals at baseline, in order to determine the effect of natural immunity on vaccine-induced immune kinetics. We found that convalescent individuals mounted higher spike-specific INF-y-secreting T-cell responses and B-cell-mediated IgG responses, after receiving the Janssen vaccine or the first dose of the Pfizer vaccine. IgG levels corresponded to the virus neutralization capacity as measured by VNT assay. At 8 months postvaccination, spike-specific cellular immunity waned to low levels in individuals with or without prior natural immunity, whereas waning of humoral immunity occurred predominantly in naive individuals. The booster shot effectively reinduced both cellular and humoral immune responses. To conclude, our data supports the implemented single-dose mRNA booster strategy employed in the Netherlands. Furthermore, the level of pre-existing natural immunity may be factored into determining the optimal time window between future booster vaccines.


Subject(s)
COVID-19 , Viral Vaccines , Antibodies, Viral , COVID-19/prevention & control , Health Personnel , Humans , Immunity, Cellular , Immunity, Humoral , Immunoglobulin G , Interferon-gamma , Kinetics , RNA, Messenger , SARS-CoV-2 , Vaccination
13.
Nat Commun ; 13(1): 4738, 2022 08 12.
Article in English | MEDLINE | ID: covidwho-1991583

ABSTRACT

Given the emergence of the SARS-CoV-2 Omicron BA.1 and BA.2 variants and the roll-out of booster COVID-19 vaccination, evidence is needed on protection conferred by primary vaccination, booster vaccination and previous SARS-CoV-2 infection by variant. We employed a test-negative design on S-gene target failure data from community PCR testing in the Netherlands from 22 November 2021 to 31 March 2022 (n = 671,763). Previous infection, primary vaccination or both protected well against Delta infection. Protection against Omicron BA.1 infection was much lower compared to Delta. Protection was similar against Omicron BA.1 compared to BA.2 infection after previous infection, primary and booster vaccination. Higher protection was observed against all variants in individuals with both vaccination and previous infection compared with either one. Protection against all variants decreased over time since last vaccination or infection. We found that primary vaccination with current COVID-19 vaccines and previous SARS-CoV-2 infections offered low protection against Omicron BA.1 and BA.2 infection. Booster vaccination considerably increased protection against Omicron infection, but decreased rapidly after vaccination.


Subject(s)
COVID-19 , Viral Vaccines , COVID-19/prevention & control , COVID-19 Vaccines , Humans , SARS-CoV-2 , Vaccination
14.
Euro Surveill ; 27(6)2022 02.
Article in English | MEDLINE | ID: covidwho-1883863

ABSTRACT

The SARS-CoV-2 Omicron variant has a growth advantage over the Delta variant because of higher transmissibility, immune evasion or shorter serial interval. Using S gene target failure (SGTF) as indication for Omicron BA.1, we identified 908 SGTF and 1,621 non-SGTF serial intervals in the same period. Within households, the mean serial interval for SGTF cases was 0.2-0.6 days shorter than for non-SGTF cases. This suggests that the growth advantage of Omicron is partly due to a shorter serial interval.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Netherlands
15.
Front Immunol ; 13: 857322, 2022.
Article in English | MEDLINE | ID: covidwho-1809402

ABSTRACT

Carnivores such as cats and minks are highly susceptible to SARS-CoV-2. Brazil is a global COVID-19 hot spot and several cases of human-to-cat transmission have been documented. We investigated the spread of SARS-CoV-2 by testing 547 domestic cats sampled between July-November 2020 from seven states in southern, southeastern, and northeastern Brazil. Moreover, we investigated whether immune responses elicited by enzootic coronaviruses affect SARS-CoV-2 infection in cats. We found infection with significantly higher neutralizing antibody titers against the Gamma variant of concern, endemic in Brazil during 2020, than against an early SARS-CoV-2 B.1 isolate (p<0.0001), validating the use of Gamma for further testing. The overall SARS-CoV-2 seroprevalence in Brazilian cats during late 2020 validated by plaque reduction neutralization test (PRNT90) was 7.3% (95% CI, 5.3-9.8). There was no significant difference in SARS-CoV-2 seroprevalence in cats between Brazilian states, suggesting homogeneous infection levels ranging from 4.6% (95% CI, 2.2-8.4) to 11.4% (95% CI, 6.7-17.4; p=0.4438). Seroprevalence of the prototypic cat coronavirus Feline coronavirus (FCoV) in a PRNT90 was high at 33.3% (95% CI, 24.9-42.5) and seroprevalence of Bovine coronavirus (BCoV) was low at 1.7% (95% CI, 0.2-5.9) in a PRNT90. Neutralizing antibody titers were significantly lower for FCoV than for SARS-CoV-2 (p=0.0001), consistent with relatively more recent infection of cats with SARS-CoV-2. Neither the magnitude of SARS-CoV-2 antibody titers (p=0.6390), nor SARS-CoV-2 infection status were affected by FCoV serostatus (p=0.8863). Our data suggest that pre-existing immunity against enzootic coronaviruses neither prevents, nor enhances SARS-CoV-2 infection in cats. High SARS-CoV-2 seroprevalence already during the first year of the pandemic substantiates frequent infection of domestic cats and raises concerns on potential SARS-CoV-2 mutations escaping human immunity upon spillback.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Neutralizing , Brazil/epidemiology , COVID-19/epidemiology , COVID-19/veterinary , Cats , Cattle , Seroepidemiologic Studies
16.
Front Immunol ; 13: 839367, 2022.
Article in English | MEDLINE | ID: covidwho-1771040

ABSTRACT

Defining immune correlates of disease severity is important to better understand the immunopathogenesis in COVID-19. Here we made use of a protein microarray platform to detect IgG- and IgA-reactive antibodies in sera and saliva respectively, and assess cross-reactivity between SARS-CoV-2 and endemic coronaviruses (eCoVs). IgG responses against the full protein of spike, but not the S1 subunit, were significantly higher in convalescent sera of patients with severe disease compared to mild disease and healthy controls. In addition, we detected reactivity of secretory IgA to eCoVs in saliva of patients with severe disease, not present in patients with moderate disease or seropositive healthy controls. These heterologous immune responses are in line with non-protective cross-reactivity, and support a potential role for immune imprinting in the pathogenesis of severe COVID-19.


Subject(s)
COVID-19 , Antibodies, Viral , COVID-19/therapy , Humans , Immunity , Immunization, Passive , Immunoglobulin A , Immunoglobulin A, Secretory , Immunoglobulin G , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , COVID-19 Serotherapy
17.
Vaccine ; 40(15): 2251-2257, 2022 04 01.
Article in English | MEDLINE | ID: covidwho-1730146

ABSTRACT

BACKGROUND: With COVID-19 vaccine roll-out ongoing in many countries globally, monitoring of breakthrough infections is of great importance. Antibodies persist in the blood after a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Since COVID-19 vaccines induce immune response to the Spike protein of the virus, which is the main serosurveillance target to date, alternative targets should be explored to distinguish infection from vaccination. METHODS: Multiplex immunoassay data from 1,513 SARS-CoV-2 RT-qPCR-tested individuals (352 positive and 1,161 negative) without COVID-19 vaccination history were used to determine the accuracy of Nucleoprotein-specific immunoglobulin G (IgG) in detecting past SARS-CoV-2 infection. We also described Spike S1 and Nucleoprotein-specific IgG responses in 230 COVID-19 vaccinated individuals (Pfizer/BioNTech). RESULTS: The sensitivity of Nucleoprotein seropositivity was 85% (95% confidence interval: 80-90%) for mild COVID-19 in the first two months following symptom onset. Sensitivity was lower in asymptomatic individuals (67%, 50-81%). Participants who had experienced a SARS-CoV-2 infection up to 11 months preceding vaccination, as assessed by Spike S1 seropositivity or RT-qPCR, produced 2.7-fold higher median levels of IgG to Spike S1 ≥ 14 days after the first dose as compared to those unexposed to SARS-CoV-2 at ≥ 7 days after the second dose (p = 0.011). Nucleoprotein-specific IgG concentrations were not affected by vaccination in infection-naïve participants. CONCLUSIONS: Serological responses to Nucleoprotein may prove helpful in identifying SARS-CoV-2 infections after vaccination. Furthermore, it can help interpret IgG to Spike S1 after COVID-19 vaccination as particularly high responses shortly after vaccination could be explained by prior exposure history.


Subject(s)
COVID-19 Vaccines , COVID-19 , Antibodies, Viral , COVID-19/diagnosis , COVID-19/prevention & control , Humans , Nucleoproteins , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Vaccination
18.
Clin Infect Dis ; 74(1): 52-58, 2022 01 07.
Article in English | MEDLINE | ID: covidwho-1621578

ABSTRACT

BACKGROUND: Indoor environments are considered one of the main settings for transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Households in particular represent a close-contact environment with high probability of transmission between persons of different ages and roles in society. METHODS: Households with a laboratory-confirmed SARS-CoV-2 positive case in the Netherlands (March-May 2020) were included. At least 3 home visits were performed during 4-6 weeks of follow-up, collecting naso- and oropharyngeal swabs, oral fluid, feces and blood samples from all household members for molecular and serological analyses. Symptoms were recorded from 2 weeks before the first visit through to the final visit. Infection secondary attack rates (SAR) were estimated with logistic regression. A transmission model was used to assess household transmission routes. RESULTS: A total of 55 households with 187 household contacts were included. In 17 households no transmission took place; in 11 households all persons were infected. Estimated infection SARs were high, ranging from 35% (95% confidence interval [CI], 24%-46%) in children to 51% (95% CI, 39%-63%) in adults. Estimated transmission rates in the household were high, with reduced susceptibility of children compared with adolescents and adults (0.67; 95% CI, .40-1.1). CONCLUSION: Estimated infection SARs were higher than reported in earlier household studies, presumably owing to our dense sampling protocol. Children were shown to be less susceptible than adults, but the estimated infection SAR in children was still high. Our results reinforce the role of households as one of the main multipliers of SARS-CoV-2 infection in the population.


Subject(s)
COVID-19 , SARS-CoV-2 , Adolescent , Adult , Child , Disease Susceptibility , Family Characteristics , Humans , Incidence
20.
J Clin Microbiol ; 59(9): e0076721, 2021 08 18.
Article in English | MEDLINE | ID: covidwho-1501529

ABSTRACT

In response to the worldwide pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the subsequent antibody tests that flooded the market, a nationwide collaborative approach in the Netherlands was employed. Forty-one Dutch laboratories joined forces and shared their evaluation data to allow for the evaluation of a quantity of serological assays for SARS-CoV-2 that exceeds the capacity of each individual laboratory. As of April 2020, these performance data had been aggregated and shared in regularly updated reports with other laboratories, Dutch government, public health organizations, and the public. This frequently updated overview of assay performance increased the efficiency of our national laboratory response, supporting laboratories in their choice and implementation of assays. Aggregated performance data for 47 immunoassays for SARS-CoV-2 showed that none of the evaluated immunoassays that detect only IgM or IgA met the diagnostic criteria, indicating that they are not suitable for diagnosing acute infections. For the detection of IgG, only the Biozek Corona virus COVID rapid test, Euroimmun SARS-CoV-2 IgG, and Wantai SARS-CoV-2 antibody (Ab) ELISA met predefined performance criteria in hospitalized patients where samples were collected 14 days post-onset of symptoms (DPO), while for patients with mild or asymptomatic infections, only the Wantai SARS-CoV-2 Ab ELISA met the predefined performance criteria if samples were collected 14 days postonset. Here, we describe this unique nationwide collaboration during the onset of the COVID-19 pandemic; the collected data and their results are an example of what can be accomplished when forces are joined during a public health crisis.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , COVID-19 Testing , Humans , Immunoassay , Immunoglobulin M , Laboratories , Multicenter Studies as Topic , Pandemics , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL